Year: 2021

Authors: Romano M.; Gatto C.; Giurgola L.; Ragazzi E.; D’Amato Tóthová J.

Translational Vision Science & Technology
Online version

This is a: Publication

Purpose: This study assessed the cytotoxicity of the impurities detected in the perfluorooctane (PFO) batches for vitreoretinal surgery that were associated with serious adverse incidents of ocular toxicity, namely, the perfluorooctanoic acid (PFOA), 1H,1H,7H-dodecafluoro-1-heptanol (DFH), 1H-perfluorooctane (1H-PFO), ethylbenzene, anhydrous p-xylene, and perfluoro-2-butyltetrahydrofurane, and two additional substances 1H,1H,1H,2H,2H-perfluorooctane (5H-PFO) and hexafluoro-1,2,3,4-tetrachlorobutane.

Methods: Serial dilutions were tested by in vitro direct contact cytotoxicity test, validated in accordance with the ISO 10993-5:2009 standard using BALB3T3 and ARPE-19 cell lines, after sample application for 24 hours.

Results: Six of the eight tested substances were cytotoxic according to the above-mentioned ISO standard. Anhydrous p-xylene, ethylbenzene, and PFOA were the most cytotoxic impurities as traces 1.55 ppm, 1.06 ppm, and 28.4 ppm reached the cytotoxicity limit, respectively. Hexafluoro-1,2,3,4-tetrachlorobutane, DFH, and 1H-PFO were cytotoxic at 980, 22,500, and 123,000 ppm, respectively. Both 5H-PFO and perfluoro-2-butyltetrahydrofuran were non-cytotoxic at the highest available concentrations (≥970,000 ppm). The dose-response curves allowed to calculate the cytotoxic concentration (CC30) for each tested substance that would reduce 30% of cell viability and corresponding to the cytotoxicity threshold according to ISO 10993-5.

Conclusions: Our study determined the in vitro cytotoxicity of several impurities in PFO associated with serious adverse incidents in retinal surgery patients.

Translational Relevance: Severe cytotoxicity of some impurities previously found in toxic perfluorocarbon liquids was confirmed. The cytotoxicity test validated according to the ISO 10993-5:2009 standard is a sensible and fast method for reliable detection of the cytotoxicity in perfluorocarbon liquids to guarantee maximal safety for the patients.